
Tetrahedron
Tetrahedron Letters 45 (2004) 5069–5071

Letters
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Abstract—A new, highly efficient procedure for the Juli�a–Colonna epoxidation is reported. Based on the original triphasic protocol
it is shown that the co-catalysis of the reaction with phase transfer catalysts results in a dramatic increase of reactivity and sometimes
also in a higher enantiomeric excess of product. The required amount of polyamino acid can be significantly reduced under the new
conditions, such that large scale industrial application of the method is now feasible.
� 2004 Elsevier Ltd. All rights reserved.
We have reported previously, in brief, that the Juli�a–
Colonna epoxidation can be co-catalysed with phase
transfer catalysts (PTCs) resulting in a dramatic increase
in the rate of the reaction.1 In order to scope the new
conditions, some further epoxidation reactions were
carried out to broaden the substrate range and to draw
comparison to the results published in the literature for
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Scheme 1. Products.

Table 1. Comparison of the triphasic/PTC-conditions2 with other Juli�a–Col

Entry Epoxide formed Time H2O2 [equiv] NaOH [equi

1 1 15min 5 4.2

2 2 8min 1.3 1.3

3 3 5 h 28 4.2

4 4 1 h 5 4.2

5 5 2 h 5 4.2

Conditions:2 procedure a, 11mol% poly-LL-Leu type 1, 11mol% TBAB used
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the epoxidation process (Scheme 1, Table 1). Note that
as test substrates, compounds were chosen, which either
exhibit low reactivity or were not epoxidisable at all
under the standard triphasic conditions.

As seen previously under the new triphasic/PTC condi-
tions the conversions were generally much faster than
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onna epoxidation protocols

v] Conv. [%] Ee [%] Ref. experiment

97 (81) 93 (98) (2 h, biphasic)5

>99 (76) 92 (76) (15 h, triphasic)6

40 (85) 90 (77) (18 h, triphasic)6

64 (70) 77 (80) (4 h, biphasic)3b

82 (61) 68 (21) Cond. not publ.7

; results of the reference experiments are given in brackets.
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Scheme 2. Standard test reaction for the Juli�a–Colonna epoxidation.

Table 2. Influence of pre-activation of the polyamino acid for selected PTC’s

Entry Epoxide formed PTC/procedure Time [min] H2O2 [equiv] NaOH [equiv] Conv. [%] Ee [%]

1 1 Aliquat336�, a 30 5 4.2 74 55

2 1 Aliquat336�, b 30 5 4.2 100 91

3 2 (Oct4N)
þBr�, a 15 1.3 1.3 100 82

4 2 (Oct4N)
þBr�, b 15 1.3 1.3 100 95

5 5 Aliquat336�, a 120 5 4.2 92 22

6 5 Aliquat336�, b 30 5 4.2 95 64

Conditions:2 11mol% poly-LL-Leu type 1, 11mol% PTC; procedure a: instant mix; procedure b: with pre-activation.
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under the published conditions, even though the poly-LL-
leucine (poly-LL-Leu) was used as it was produced.2 The
enantiomeric excess (ee) was at least in the same range as
the reported results, sometimes significantly higher. In
the cases of the epoxidation of the 1-alkyl enones (Table
1, entries 3 and 4) some side reactions were observed,
especially in the case of the epoxidation of 3-phenyl-2-
butenone (Table 1, entry 4). However, it is noteworthy
that this substrate type has not been epoxidisable at all
under the triphasic conditions so far.3b

As reported for trans-chalcone, the type of PTC used
has a profound influence on the outcome of the reac-
tion.1 The use of a more lipophilic catalyst results in a
dramatic loss of enantiomeric excess. However, this
effect can be minimised if the polyamino acid is pre-
activated2 in the presence of the PTC, whereupon the
enone (or sulfone) is added later. In order to ascertain
whether this effect can also be observed with other
substrates further tests were carried out (Table 2).

For all the substrates epoxidised in the presence of a
lipophilic PTC a significant positive influence on the ee
was observed when pre-activation of poly-LL-Leu was
performed.

Under the previously published conditions, the usual
amount of poly-LL-Leu needed for efficient catalysis was
in the range of ca. 10mol%, which translates to ca.
200wt%. Due to the very fast reaction under the tri-
phasic/PTC-conditions it was interesting to determine
whether the amount of the polyamino acid could be
reduced (Table 3). Chalcone was used in the standard
test reaction (Scheme 2).3

Interestingly a significant reduction in the amount of
poly-LL-Leu required was achieved for both poly-LL-Leu
Table 3. Reduction of the amount of poly-LL-Leu required

Catalyst type Concentra-

tion [mol%]

Concentra-

tion [wt%]

Conversion

[%]

Ee

[%]

Poly-LL-Leu type 1 0.28 5 96 90

0.11 2 93 90

0.03 0.5 52 83

Poly-LL-Leu type 2 0.20 2 97 93

0.05 0.5 89 90

0.02 0.2 77 84

0.01 0.1 61 80

Conditions: procedure a, 3mol% TBAB, 4.2 equiv NaOH, 5 equiv

H2O2, 1 h reaction time.
2

types. Using the triphasic conditions, a reduction of
poly-LL-Leu by a factor of 100 was possible without
significant loss of enantiomeric excess. Even with poly-
LL-Leu amounts of just 0.1wt%, a reasonable enantio-
meric excess could be achieved. Due to the reduction of
poly-LL-Leu, the mixing and work-up of the reaction
system was no longer a problem; the reaction mixture
appears as a ‘2-phase-system‘ with only a trace of the
catalyst at the phase boundary, rather than the usual
voluminous gel.

In a further test (2E)-1-phenyl-3-pyridin-2-yl-prop-2-en-
1-one was epoxidised under the new conditions with just
0.5mol% (9wt%) poly-LL-Leu type 1 (Scheme 3). The
reaction with this substrate is known to be slow under
standard conditions (16 h, 115wt% poly-LL-Leu, 84%
conv., 72% ee, triphasic conditions).8 The outcome of
the reaction confirmed the observation achieved with
trans-chalcone.

The influence of the amount of the PTC on the rate of
reaction and the enantiomeric excess of the chalcone
epoxide was also tested using the standard test reaction
(Scheme 2). As expected it was found that the rate of
reaction decreases with a reduction in the amount of
PTC but the enantiomeric excess remains high. It is
interesting to note that even 0.1mol% of the catalyst
was sufficient to co-catalyse the reaction. With no PTC,
less than 1% conversion to the epoxide was observed in
the same reaction time (Fig. 1).

The principle of co-catalysis is also applicable to other
reaction conditions in the Juli�a–Colonna epoxidation,
that is, biphasic conditions and protocols involving sil-
ica-supported polyamino acids (PaaSiCat). Normally
for these conditions pre-activated poly-LL-Leu is re-
quired.9 Of interest is the fact that, under the new PTC
co-catalysed conditions a reasonable enantiomeric
excess can be achieved even with unactivated poly-LL-Leu
(i.e., as produced directly from the polymerisation
reaction). As under the triphasic conditions the reaction
time as well as the enantiomeric excess is enhanced by
the PTC (Table 4). This fact might be explained by a
faster formation of the ‘real’ catalyst1 and therefore a
reduced (unselective) background reaction.



Table 4. Influence of the PTC under biphasic- and PaaSiCat-condi-

tions using unactivated poly-LL-Leu, standard test (epoxidation of

trans-chalcone)

Conditions Results

Biphasic >99% conversion, 53% ee

Biphasic/PTC >99% conversion, 78% ee

PaaSiCat >99% conversion, 86% ee

PaaSiCat/PTC >99% conversion, 92% ee

Conditions: 30min room temp; biphasic;3b PaaSiCat;3c biphasic/PTC

and PaaSiCat/PTC as before but with 11mol% TBAB.
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0.5 mol% poly-L-Leu, 3 mol% TBAB
aq. H2O2 (1.5 eq.), toluene,
NaOH (1.5 eq.), 30 min

> 99% conv., 84% ee

Scheme 3. Epoxidation of (2E)-1-phenyl-3-pyridin-2-yl-prop-2-en-1-one.
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Figure 1. Influence of the PTC concentration on the rate of reaction

and enantiomeric excess. Conditions2: Standard test reaction, proce-

dure a, 0.3mol% poly-LL-Leu type 1, indicated amount of TBAB,

1.5 equiv H2O2, 1.5 equiv NaOH, 2 h reaction time.
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In summary, the PTC co-catalysed Juli�a–Colonna
epoxidation is normally much faster and the enantio-
meric excess higher than under previously documented
conditions. The effect is generally observable under all
tested protocols for the Juli�a–Colonna epoxidation. In
particular, under the triphasic conditions, the principle
of co-catalysis is very beneficial since downstream work-
up is very simple and only cheap ingredients are
required. The necessary amount of poly-LL-Leu can be
reduced significantly to 2–5wt%, thus mixing and cat-
alyst recovery is no longer a limitation.
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